skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peter, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available October 1, 2026
  3. Free, publicly-accessible full text available August 11, 2026
  4. ABSTRACT Wind is the primary dispersal mechanism of most fungal spores but is rarely considered in studies of fungal communities, limiting inference of assembly mechanisms and forecasting responses to climate change. We compiled wind‐connectivity models—‘windscapes’—to model potential dispersal of fungal spores at the continental scale and linked them with a molecular dataset of North American soil fungi. Our analyses demonstrate that prevailing windflow patterns exhibit a significantly stronger signal on fungal community structure than do geographic distances amongst sites. Notably, the signature of wind was detectable for mushrooms and fungi producing primarily wind‐dispersed spores. Contrastingly, fungi primarily reliant on animal dispersal exhibited a strong signature of geographic distance but not wind‐connectivity. Additionally, we show that directionally ‘downwind’ sites are more diverse than comparatively ‘upwind’ sites. Altogether, our findings suggest that future wind patterns will shape the adaptation potential of fungal communities dispersing into suitable climatic niches. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the RIS was grounded along the southern Victoria Land coast, completely blocking the mouths of several of the McMurdo Dry Valleys (MDVs). Several authors have proposed that very large paleolakes, proglacial to the RIS, existed in many of the MDVs. Studies of these large paleolakes have been key in the interpretation of the regional landscape, climate, hydrology, and glacier and ice sheet movements. By far the most studied of these large paleolakes is Glacial Lake Washburn (GLW) in Taylor Valley. Here, we present a comprehensive review of literature related to GLW, focusing on the waters supplying the paleolake, signatures of the paleolake itself, and signatures of past glacial movements that controlled the spatial extent of GLW. We find that while a valley-wide proglacial lake likely did exist in Taylor Valley during the early stages of the Ross Sea I glaciation, during later stages two isolated lakes occupied the eastern and western sections of the valley, confined by an expansion of local alpine glaciers. Lake levels above ~140 m asl were confined to western Taylor Valley, and major lake level changes were likely driven by RIS movements, with climate variables playing a more minor role. These results may have major implications for our understanding of the MDVs and the RIS during the Ross Sea I glaciation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available December 31, 2025
  7. Abstract Marine protected areas (MPAs) are widely implemented tools for long‐term ocean conservation and resource management. Assessments of MPA performance have largely focused on specific ecosystems individually and have rarely evaluated performance across multiple ecosystems either in an individual MPA or across an MPA network. We evaluated the conservation performance of 59 MPAs in California's large MPA network, which encompasses 4 primary ecosystems (surf zone, kelp forest, shallow reef, deep reef) and 4 bioregions, and identified MPA attributes that best explain performance. Using a meta‐analytic framework, we evaluated the ability of MPAs to conserve fish biomass, richness, and diversity. At the scale of the network and for 3 of 4 regions, the biomass of species targeted by fishing was positively associated with the level of regulatory protection and was greater inside no‐take MPAs, whereas species not targeted by fishing had similar biomass in MPAs and areas open to fishing. In contrast, species richness and diversity were not as strongly enhanced by MPA protection. The key features of conservation effectiveness included MPA age, preimplementation fisheries pressure, and habitat diversity. Important drivers of MPA effectiveness for single MPAs were consistent across MPAs in the network, spanning regions and ecosystems. With international targets aimed at protecting 30% of the world's oceans by 2030, MPA design and assessment frameworks should consider conservation performance at multiple ecologically relevant scales, from individual MPAs to MPA networks. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  8. ABSTRACT AimSurveying the demography of populations near species range edges may indicate their vulnerability to range contractions or local extinction as the climate changes. In the rocky intertidal, not only are latitudinal ranges constricted by thermal stress, but tides also create zonation or a ‘vertical range’ driven by sharp environmental gradients. By investigating demographics along the latitudinal and vertical ranges simultaneously, we can investigate whether populations may be vulnerable to a changing climate. LocationRocky intertidal habitats along west coast of the United States. TaxaOchre sea starPisaster ochraceus, six‐armed sea starLeptasteriasspp., emarginate whelks(Nucella ostrina and N. emarginata) and channeled whelkN. canaliculata. MethodsIn 2018, we surveyed the demographics of the taxa above at 33 sites spanning > 11° latitude from central Oregon to southern California, near the southern range limits of each taxon. We counted and sized individuals from the high to low intertidal zone. To understand how environmental stress changed with latitude, we evaluated intertidal temperaturesin situ, as well as tidal extremes, tidal amplitude and wave exposure using offshore buoys. ResultsFor all taxa, population density, the relative proportion of smaller individuals (except for emarginate whelks) and the upper vertical limits on the shore declined from north to south as temperatures increased and high tide height, tidal amplitude and wave heights decreased. In addition, smaller individualLeptasteriasspp. generally inhabited lower shore levels while smaller individual emarginate whelks inhabited higher shore levels coastwide. ForN. canaliculata, smaller animals were higher on shore northward, but lower on shore southward. Main ConclusionsWhile this study is a snapshot in time and cannot assess impacts of climate change, our surveys suggest environmentally‐related demographic limitation toward southern range limits and demographically vulnerable southern populations. Therefore, a warming climate may cause local extinctions or range contractions near southern limits. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  9. Free, publicly-accessible full text available May 1, 2026